

PRÉSENTATION RECYCLAGE DES SACS ISSUS DE LA COLLECTE DES RÉSIDUS ALIMENTAIRES

Division de la gestion des matières résiduelles CVGMR – 26 janvier 2023

1

OBJECTIFS DE LA PRÉSENTATION

- Présenter les démarches entreprises jusqu'à maintenant pour recycler les sacs
- Identifier les solutions le plus prometteuses
- Définir les étapes à venir en 2023
- Répondre à vos questions

1. COMPOSITION DES REJETS

VILLE DE QUÉBEC
l'accent
d'Amérique

Résultats de la caractérisation des rejets bruts (en % de poids)

Résidus alimentaires : 37 %

Sacs verts et mauves : 60 %

• Autres contaminants: 3 %

3

1. COMPOSITION DES REJETS Séparation et nettoyage des sacs Lambeaux de sacs de Procédé de plastique REJETS nettoyage Lambeaux de sacs de plastique Procédé de Résidus alimentaires non broyés Contaminants (emballages, tissus, séparation ustensiles, autres...) Résidus alimentaires non brovés Incinérateur **Contaminants** Séparation et nettoyage des sacs Objectif: Séparer les lambeaux de sacs de plastique des RA non broyés et des contaminants et les nettoyer Pistes de réflexion : Équipement installé au CRMO ou à proximité de l'incinérateur ou étape de conditionnement réalisée par un tiers externe

2. ÉTAPES RÉALISÉES

Entreprises contactées

- Plus de 70 entreprises ont été contactées en amont
- Objectif : Connaître leurs capacités de conditionnement et de traitement des extrants du Tiger et sonder leur intérêt à le faire

Compagnie	Domaine d'affaires ■
Wasterobotics	Intégrateur industriel
Viridis Environnement	Traitement des matières organiques
VIA	Recycleur, Conditionneur
Vecoplan LLC	Fabricant d'équipement industriel
Van Dyk	Fabricant d'équipement industriel
Ulaval	Centre de recherche
Trennso Technik	Fabricant d'équipement industriel (traitement et séparation)
Transcontinental	Recycleur spécialisé dans le lavage et granulation
TOMRA	Fabricant d'équipement industriel
Suez	Recycleur spécialisé dans le lavage et granulation
Strarzer	Expertise environnementale
STADLER Anlagenbau GmbH	Tri et recyclage
Sparta Group	Incubatuer pour développer de nouvelles technologies vertes
Solway Recycling Limited (Ecosse)	Manufacturier de produits à partir de plastique recyclé
Soleno	Conditionnement et recyclage du plastique PEHD
Sherbrooke OEM	Manufacturier d'équipement de recyclage
SCS (Drummondville)	Conditionnement du plastique
Sadako	Recyclage de produits électroniques
Runi	Conditionnement du plastique
Revital Polymers Sarnia Ontario	Tri, conditionnement et vente de plastique en granules
Replast	Fabrication de mobilier urbain à partir de plastique recyclé
Pyrowave	Reyclage du plastique par des procédés chimiques
Polytechnique de Montréal	École d'ingénierie
Polydense (Ced-Lo)	Granulation et lavage des plastiques
Plexus recycling technologies	Tri et recyclage
Plexus recycling technologies	Tri et recyclage
Platimum	Manufacturier de produits à partir de plastique recyclé
Plastics recycling world Expo	Recyclage de plastique
Pellenc ST	Tri et recyclage
Paverreco	Incorporation de plastique dans du pavé
Newtech Waste	Recyclage et conditionnement du plastique
Modix Plastique Incorporated	Recyclage de plastique
Matrec	Collecte de déchets
Machinex	Intégrateur industriel

5

2. ÉTAPES RÉALISÉES

Essais réalisés

- 3 entreprises se sont qualifiées pour effectuer les essais
 - Enerkem : Production de biocarburant à partir des rejets du Tiger
 - o Machinex: Tri et nettoyage des sacs plastique
 - o Viridis: Tri et récupération de la matière organique
- Conditionnement des rejets nécessaire au préalable (exigences de qualité de la matière à respecter)
 - o Séchage
 - Broyage

2. ÉTAPES RÉALISÉES

VILLE DE VIL

Test de séparation/nettoyage des sacs

Enerkem

Production de biocarburant à partir des rejets du Tiger

- o Les critères d'entrée sont respectés
- L'échantillon avait un faible taux de matière organique (12%)
- o Essai non concluant

7

2. ÉTAPES RÉALISÉES

Test de séparation/nettoyage des sacs

Machinex

Tri et nettoyage des sacs de plastique

- o Équipement : broyeur à marteaux
- o Essai non concluant

Unders Output

2. ÉTAPES RÉALISÉES

VILLE DE CUÉBEC Paccent d'Amérique

Test de séparation/nettoyage des sacs

Viridis

Tri et récupération de la matière organique

- Échantillon séché et non broyé : potentiel de recyclage élevé (13% MO et 48% sacs)
- Échantillon séché et broyé : potentiel de recyclage faible (17% sacs)

α

3. SOLUTIONS EN FIN DE PROCÉDÉ

VILLE DE VIL

Densification de la matière

- · Réduire le volume
- · Préparer une matière uniforme

3. SOLUTIONS EN FIN DE PROCÉDÉ

VILLE DE CUÉBEC Naccent d'Amérique

Densification de la matière

- Mise en granulés de plastique
- Envoi pour la co-injection

11

3. SOLUTIONS EN FIN DE PROCÉDÉ

VILLE DE QUÉBEC l'accent d'Amérique

Résultats de co-injection

- Tasse
- Latte

3. SOLUTIONS EN FIN DE PROCÉDÉ

Débouchés possibles identifiés

- Mobilier urbain
- Lattes pour nos corbeilles de rue
- · Roues de bacs de recyclage
- Jardinières
- Etc.

13

4. PROCHAINES ÉTAPES

Test de conditionnement des sacs

Presse RUNI

Objectifs:

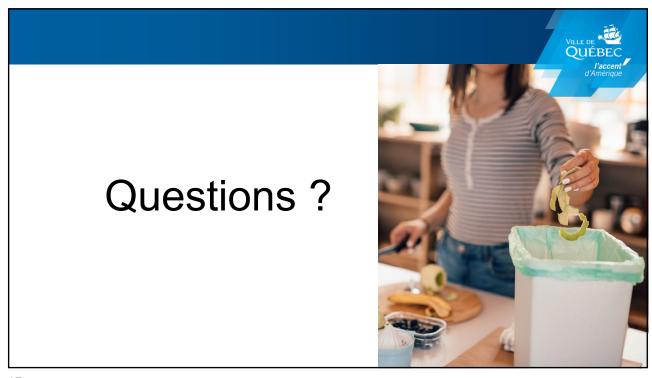
- o Diminuer la teneur en eau
- o Diminuer le volume de matière à transporter

4. PROCHAINES ÉTAPES

VILLE DE QUÉBEC l'accent d'Amérique

Test de séparation/nettoyage des sacs

- Twister de Drycake
 - · Tri et nettoyage des sacs plastiques
 - Test prévu en Californie d'ici l'été



15

PRINCIPAUX CONSTATS À CE STADE

- La résine choisie pour la fabrication du sac est 100 % recyclable
- Le recyclage des rebuts de sacs apparaît possible, mais plusieurs étapes de traitement sont nécessaires
- Les coûts sont élevés pour le moment
- Co-injection semble la solution la plus prometteuse
- Un préconditionnement au CRMO apparaît essentiel, nonobstant la solution retenue
- · Les démarches se poursuivent

